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SUMMARY

This paper reports the results of an analytical and experimental

study of flutter and static divergence of a rigid conical shell mounted

on springs that permitted freedom in vertical translation and pitch. The

test program was conducted with air as the test medium in the Langley

9- by 18-inch supersonic aeroelastlcity tunnel at Mach numbers 1.64, 2,

and 3 and with helium in the Langley 8-inch hypersonic aeroelasticity

tunnel at a Mach number of 6.83 and in the Langley 24-inch hypersonic

aeroelasticity tunnel at a Mach number of 15.4. Flutter calculations

were made based on several slender-body theories for approximating the

oscillating aerodynamic forces and moments acting on the cone. Good

agreement with experimental results was obtained for the quasi-steady

aerodynamic approaches of Van Dyke and Von Karman at low supersonic

speeds and for Newtonian theory at hypersonic speeds. Pitch-axis posi-

tion and translation-to-pitch frequency ratio had a pronounced effect

on the flutter speed boundary, particularly near a frequency ratio of 1.

No flutter was encountered experimentally or predicted analytically when

the center of gravity of the model was ahead of the pitch axis.

With the model restrained to permit only the pitch degree of free-

dom, static divergence was obtained at the low supersonic Mach numbers

for the pitch axis at three-fourths of the cone length measured from the

nose of the cone, but the agreement of experimental with calculated diver-

gence conditions was _oor and showed no consistent trend with respect

to variation in Mach number. The introduction of an axial force, based

on steady total drag measurements, into the flutter calculations resulted

in higher theoretical flutter speed boundaries for frequency ratios less

than 1 and slightly lower flutter speed boundaries for frequency ratios

greater than 1. For some calculations the direction of the axial force

was arbitrarily reversed, and this change resulted in lower flutter speed

boundaries for frequency ratios less than 1 and slightly higher boundaries

at frequency ratios greater than 1. The effect of a steady drag force

on theoretical divergence boundaries was to raise the divergence speed

parameter above that for zero drag for pitch axes at which divergence

occurs and to lower it for an oppositely directed steady axial force.
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INTRODUCTION

Although muchof the effort spent in the development of the theory
for aerodynamic forces on slender bodies has dealt with steady-state
conditions, a considerable part of the theory already developed can be
extended to apply to unsteady conditions. Such extensions yield what
are commonlycalled quasi-steady aerodynamics. To go beyond the quasi-
steady concept, one must deal with the velocity potential for unsteady
motion, but the extent to which this can be satisfactorily done is
severely limited. In fact, all knownapproaches for determining body
forces are subject to more or less stringent limitations. For example_
in the quasi-steady concept, the frequency of oscillation must be small

and, in general, the similarity parameter _IM2 - 11 T << 1 for super-
sonic flow and M_> 1 for hypersonic flow (M being the Machnumber
and _ the body thickness ratio or somelocal slope such as the nose
angle). The second of these limitations, which holds for steady as well
as unsteady flow, implies that none of theoretical methods to date can
be relied on throughout the subsonic and supersonic speed ranges, partic-

ularly in the transonic region or in a range where _IM2 - iI T is
neither large nor small.

This paper reports an investigation aimed at making someevaluations
of existing theories that can be applied to unsteady conditions. This
effort mainly involved the calculation of the flutter boundaries of
simple spring-mounted cones and comparison of the results with experi-
mental results at supersonic Machnumbersranging from 1.64 to 1_.4.
The cones were actually light hollow shells which were, for all practical
purposes, rigid 3 flexibility being provided by springs that permitted
vertical translation of and pitch about an axis that could be fixed at
various positions along the axis of the cone. This simplified config-
uration was chosen because its structural characteristics could be accu-
rately represented. Thus_ any differences between theory and experiment
would be due mainly to the aerodynamic representation in the theory.

The aerodynamic theories considered in this study are the Munk-Jones
or momentumtheory (ref. i), the frequency expansion of the velocity
potential of first-order slender-body theory (refs. 2 and 3), Von Karman's
approximation for a cone (ref. 4), Van Dyke's second-order theory
(ref. 5), a piston-theory approximation of Miles and Young (ref. 6),
shock expansion theory (ref. 7) treated in the sense suggested by Eggers
and Savin (ref. 8), and Newtonian theory with two modifications (refs. 9
to ll).

Although the present paper is primarily concerned with flutter, the
static aeroelastic phenomenonof divergence is also considered, and some
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limited comparisons with experiment are made. Provision is also made in

the basic flutter and divergence analysis for the introduction of a

steady axial force. Results of some calculations are presented including

such a force in the form of a steady-state drag coefficient, and values

of this coefficient are based on measured base pressures and drag forces

on the models used for the flutter and divergence tests.
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b

Cp

CD

CmD

D
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f(t),f(to)

g

SYMBOLS

free-stream speed of sound

aerodynamic coefficient in pure translation in flutter

equation (eq. (2))

aerodynamic translation-pitch coupling coefficients in

flutter equation

aerodynamic coefficient in pure pitch in flutter equation

length of cone measured along axis of cone

pressure coefficient

total drag coefficient

moment coefficient due to drag, CmD = CD_ D

drag force, positive aft, q_b2CD , ib

frequency, c)/2x

function proportional to pressure coefficient as derived

for quasi-steady theories (see table following eq. (Ta))

harmonic functions of time in shock expansion theory

(see appendix)

structural damping coefficient in eigenvalue for flutter

(see eq. (2))

translational amplitude of pitch axis of cone flutter

model, positive down

mass moment of inertia of cone flutter model in pitch about

pitch axis
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f(L

ff

fn

Kc

b

k = 560

V

L

L1 ,L3

L2,L4

m

mh

M

M 1 ,M 3

M 2 ,M4

m

uncoupled pitching frequency

flutter frequency

nth natural (coupled) frequency where n = 1,2

term by which downwash is introduced into Von Karman's

quasi- steady theory (see appendix)

reduced frequency

spring constant of cone flutter or divergence model in

pitch

lift per unit length acting on cone, lb/ft

generalized lift (see eq. (3))

lift components of real aerodynamic coefficients in

frequency-expansion method

imaginary lift components of aerodynamic coefficients in

frequency-expansion method

mass of cone flutter model free to pitch

mass of cone flutter model in vertical translation

free-stream Mach number

generalized aerodynamic moment about pitch axis

(see eq. (4))

real moment components of aerodynamic coefficients in

frequency-expansion method

imaginary moment components of aerodynamic coefficients

in frequency-expanslon method

Mach number of unyawed cone at its apex behind shock wave
on surface of cone

Mach number immediately behind shock wave at nose of cone
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P

p_

q

qd

Q

r(x)

rb

rc_

t

V

V

W

X

xD

X(_

xg

z(x,t)

pressure on body surface

pressure on unyawed cone at its apex behind shock wave on

surface of cone

free- stream static pressure

dynamic pressure

dynamic pressure at divergence

function of M8 and 7 given by equation (A16)

radius of body of revolution at distance x from the nose,

rb_

base radius of body

dimensionless radius of gyration about pitch axis, IIAm_

time

local normal velocity at point on surface of body of
revolution

free-stream velocity

downwa sh velocity

distance along body center line and tunnel center line

measured from nose of body, positive aft (see fig. 1),

b_

distance from pitch axis to center of drag force, b_ D

distance from nose of body to pitch axis of cone flutter

or divergence model, bEa

distance from pitch axis to center of gravity of model in

pitch, positive for center of gravity aft of pitch axis,

b_g

amplitude function specifying motion of body, see eq. (8a)
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a(x)

7

6O

%

ah

P

_h =mh_
m

e

rotational amplitude of cone flutter model in pitch about

pitch axis_ positive nose up

angle between shock wave and body surface (see sketch

following eq. (A13))

parameter in shock-expansion theory given by eq. (A15)

semi-vertex angle of cone

series in lift expression for frequency expansion method

(see eq. (5) and ref. 3)

ratio of specific heats

angular frequency, 2_f

uncoupled angular frequency in vertical translation

uncoupled angular pitching frequency

nth natural (coupled) frequency where n = 1,2

complex eigenvalue for flutter (see eq. (2)),

__)2 (i + ig)

mass-density ratio, m

airstream density

angular polar variable of integration around body of

revolution (see sketch following eq. (6))

Nondimensional lengths are denoted by barred symbols unless other-

wise specified.

L

i

2

6

2



7

EXPERIMENTAL PRC_RAN

L

i

2

6
2

The experimental data used to provide a basis for evaluating various

theories for calculating the oscillating aerodynamic forces on cones was

obtained by testing simple spring-mounted cones in supersonic flow for

flutter. These models and the necessary supporting apparatus were

designed to permit translation of and pitch about an axis perpendicular

to and intersecting the longitudinal axis of the cone. In addition to

the flutter experiments_ divergence tests were made at all Mach numbers

except M = 6.83 and 15.4. Also, base pressures were measured at the

lower Mach numbers_ and total axial-force measurements were made at

M = 6.83.

Properties of Models

The models consisted of hollow conical shells mounted on springs

as shown in figure i. These conical shells were made from balsa wood

laminated with paraplex and fiber glass and were reinforced at the

trailing edge with a fiber glass ring mounted just inside the cone.

This construction resulted in a shell structure that was for all prac-

tical purposes rigid with respect to the mounting springs. Flexibility

of the model in pitch was provided by a flex hinge which, as shown in

figure l(a)_ is composed of a pair of Swedish steel straps crossed

between two steel blocks. The pitch axis was located at the intersection

of the straps and variations in the hinge stiffness were obtained by

varying the strap thickness. Flexibility in translation was obtained

from the arrangement of two parallel straps shown on figure l(a). This

arrangement permitted only vertical translation of the pitch axis. The

translation stiffness was varied by varying the length of the straps for a

particular strap thickness.

The mass of the model free to pitch m consisted of the mass of

the cone and its aluminum mounting bar plus the mass of the pitching

springs and the forward mount block. The mass of the model in transla-

tion mh consisted of the mass of the model in pitch plus the mass of

the aft mounting block and the effective mass of the translation springs.

The effective mass of the translation springs was estimated to be

0.37 times the actual mass of the springs. Geometric and inertial prop-

erties of the models are listed in table I.

In order to keep the structural damping as low as possible and to

minimize the structural differences between models, the springs were

clamped to the steel blocks as tightly as possible.



Test Program

The experimental program was conducted in the Langley 9- by 18-inch
supersonic aeroelasticity tunnel at Machnumbers1.64, 2, and 3 and in
the Langley 8-inch hypersonic aeroelasticity tunnel at a Machnumber
of 6.83. In addition_ one flutter test point was obtained in the Langley
24-inch hypersonic aeroelasticity tunnel at a Machnumberof 15.4. For
each model at each Machnumber, the stiffnesses were varied, as previ-
ously noted, to obtain a wide range of uncoupled translation-to-pitch
frequency ratios. This parameter was obtained from the relation

- 1

(1)

in terms of the measured natural (coupled) frequencies e_l, _2, and

the measured uncoupled pitching frequency _. These frequencies were

obtained by shaking the model with an air jet shaker (similar to that

described in ref. 12) prior to each tunnel run and by reading oscillo-

graph traces of signals from resistance-wire strain gages mounted on

both translation and flex hinge straps. The uncoupled pitching frequency

was obtained with a spacer wedged between the translation spring straps

to eliminate the translational degree of freedom. Damping coefficients

were measured from records of the decay of free oscillations and were

found to be very small (that is, g _ 0.005 to 0.01).

In the operation of the tunnels, the Mach number was held constant

whereas the test-section density was increased until flutter occurred.

A recording oscillograph was used to obtain a continuous record of tunnel

stagnation temperature and pressure. Strain-gage signals on the same

oscillograph record were used to indicate the onset of flutter and to

determine the flutter frequency. Divergence conditions were determined

for model 4 (_ = 0.75) for Mach numbers 1.64, 2, and 3, the transla-

tional freedom being eliminated by substitution of a solid bar for the

translation springs. The onset of divergence was determined from the

flex-hinge strain-gage signals.
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Axial-Load Measurements

The total steady aerodynamic drag acting on the cone mounted on the

sting was estimated for three of the Mach numbers tested by a combination

of measured and calculated data. At M = 2 and M : 3 the total drag

coefficient CD was approximated from measured base-pressure data



together with calculated forebody pressure drag and skin-friction drag
coefficients. At M = 6.83, CD was obtained from force measurements
madeon a model fitted with an axlal-load cell rigidly attached to the
sting. Values of CD are listed in table II. The two different values
for each Machnumber result from the variation of CD with Reynolds
number corresponding to the wide ranges of dynamic pressures covered in
the test programs.
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Experimental Result s

The experimental flutter and divergence data are listed in

table III. Flutter was obtained at four of the Mach numbers over a wide

range of frequency ratios for all models except those in which the center

of gravity was ahead of the pitch axis (Eg negative in table I).

The flutter results in table III are shown in coefficient form as

functions of frequency ratio in figures 2 to ll. The flutter speed is

given in the upper parts of the figures in terms of a stiffness-

altitude parameter similar to that so widely used in wing flutter. For

the test ranges of mass-density ratio 1/_ and pitch frequency _m,

all the flutter speed data for a given pltch-axis position tend to lie

on the same curve. The flutter frequency is given in the lower parts

of figures 2 to ll in terms of the ratio _/_f which also appeared to

be unaffected by changes in density or pitch stiffness.

Note that the experimental flutter speed appeared to be highly sen-

sitive to frequency ratios very close to 1. This is particularly evident

in figures 2, 3, and 5 to 8 where the flutter speed dropped to a low

point between e_n = 1.O to _n = 1.2 from a no-flutter condition at
_k _k

%
M_ 1.O. It is also evident that this minimum point tends to decrease

slightly with increasing Mach number from M = 1.64 to M = 3 but

experiences more of a reduction at _ = 0._8 than at _ = 0.5. The

effect of pitch axis, including _ = 0.667, is also mentioned later in

connection with the analytical flutter boundaries.

The divergence tests on model 4 at Mach numbers 1.64, 2, and 3

resulted in near linear variations of dynamic pressure with f2

(proportional to pitch stiffness) as shown in figure 12. The scatter

in the data at Mach number 2 may be due to the fact that more difficulty

was encountered here than at the other two Mach numbers in detecting the
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onset of divergence. The slope of each trend in figure 12 is propor-

2_qdbrb2 _%2ic_ 2_qdbrb2_kc_ _tional to the divergence parameter r /which is

shown as a function of Mach number in figure 13.

ANALYTICAL STUDIES AND COMPARISON WITH EXPERIMENT

The analytical work of this investigation is reported and compared

with experiment in this section. This work consisted mainly of calcu-

lating flutter boundaries for the spring-mounted cones by using various

slender-body theories to approximate the oscillating aerodynamic forces

and moments acting on the cone. The basic flutter equation is presented

for the translation and pitching degrees of freedom shown schematically

in figure l(b). Included also in this section is the equation for

static divergence. Provision is made in the aerodynamic forces for the

addition of a steady total axial force in both flutter and divergence

equations, and calculations to determine the effect of this force are

based on measured drag data.

L

i

2

6
2

Flutter Equation

The flutter equation, derived in the usual manner for the system

shown in figure l(b) is, in matrix form, as follows:

r)

_g + A_a (i - _)rJ + AG_

0

='oI
(2)

The aerodynamic coefficients AhhJ Ah_, A_h , and Au_ are obtained

from the generalized llft and moment expressions

L = J0 Z(x) dx = _'pb2rb2a. _" --+ Ahma
(3)
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and

: (x - :  pb3rb2 --+
(4)

In the following sections expressions for Z(x) are given for each of

the slender-body theories considered in this study. Corresponding

expressions for Ahh , Ah_ , and so forth, are listed in table IV.

Unsteady Aerodynamic Coefficients

A limiting form of the velocity potential for the oscillatory case

is known in the form of definite integrals. (See, for example, ref. 2.)

These integrals can be evaluated by expanding the integrands in powers

of reduced frequency k as is done in references 2 and 3 or by numerical

integration procedures such as those used in reference 13. In refer-

ence 3 the frequency expansion is carried to the fifth power of k for

the motions considered in the present study, and the lift per unit length

is given therein by the expression

= n(x)

for an arbitrary body of radius r(x), where _ = _2 _ l and _(x) is

a series of terms that are functions of Mach number and mode shape for

the cone. Use of this series in equation (5) is shown in reference 3

to give the aerodynamic coefficients listed in table IV. The L and

M terms in these coefficients are functions of Mach number, mode shape,

and reduced frequency and are also given in detail in reference 3. This

method is valid for low values of _ - 2kM2 and was applied in the

_2

present study for Mach n_bers of 1.64, 2, and 3.

Quasi-Steady Aerodynamic Coefficients

Applications involving closed-form solutions.- An extension of

steady-flow theory to the unsteady case for a body of revolution basi-

cally involves the introduction of the downwash into an expanded form of

the steady-state pressure coefficient. The lift per unit length is then

obtained by circumferential integration of the vertical component of the

pressure at a point on the body surface, that is, through the relation
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_02_z(x)= qr(x) % sine de (6)

where q is the dynamic pressure, e is the variable of integration

as shown in the following sketch, and Cp is the pressure coefficient

which is a function of Mach number, local slope of the body surface,

and downwash and specifies the motion of the body. (Further details on

the form of Cp used in eq. (6) are given in the appendix for two par-

ticular theories.)

k

I r d8

qCpr(X)sin 8
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Performance of the indicated integration in equation (6) leads to

z(x)= -=pVr(x)_ (7a)

For a cone of semi-vertex angle 5

(x)---_vx82(F/8)w (Tb)

where the quantity F/8 is given in the following table for the quasi-

steady theories considered in this paper. (The introduction of the

negative sign in eqs. (7) makes the direction of pressure indicated in

the foregoing sketch compatible with the direction for positive down-

wash components h and _ indicated in fig. l(b).)
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THEORY

Munk-Jones (ref. i)

Von Karman (ref. 4)

Van Dyke's 2d order

theory (ref. 5)

Piston theory (ref. 6)

Newtonian theory (refs. 9

to ii)

FI5

2

2 - 52 21°g _5 3 M2 + ll]2

i_+ 7 + 1 + Y + 1 M5
M5 2 4

E = 2, (ref. 9)
5

F (ref. 10)
_=?'+i,

F _ +Z--_/I -I + 2 _) (ref. IiE:Cpmax 7+i\ 7+3 '

The ratio of specific heats is denoted by _.

The first of these theories, also known as the momentum theory, is seen

to be independent of Mach number. The next two theories apply to low

supersonic Mach numbers and the last two to high supersonic Mach numbers.

The downwash w in equations (7) is given by

_z 8z (8a)
w : v_+ _

where z specifies the motion of the body and in the present study is

given by

z(x,t) = _(x)f(t) = z(x)e i_t (8b)
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with

:ho+ (x- (8c)

for the oscillatory translation and pitch degrees of freedom represented

in figure l(b). The lift per unit length is thus completely determined,

and use of equation (7a) with equations (8) in equations (3) and (4)

leads to the quasi-steady aerodynamic coefficients listed in table IV.

Application of shock-expansion theory.- This method also involves

a quasi-steady approach with the lift per unit length given by equa-

tion (6) and the pressure coefficient by the basic expression

(9)

where p is the pressure on the surface of the body and p_ is the

pressure in the undisturbed stream ahead of the body. The pressure

ratio p/p_ is derived in reference 7 for high supersonic speeds in

terms of the downwash and the approximate expressions of reference 8

for pressure ratio and Mach number on the surface of the body behind

the shock wave at the nose. These approximations of reference 8 are in

turn functions of the shock-wave inclination corresponding to the slope

of the body at the nose.

1o

The application of this method to the 7_ (semi-vertex angle) cone

of the present study is demonstrated in the appendix for Mach number 6.83,

and the specific lift per unit length for this case is shown to be

_(x) = 3"86q_xS[_+M SO + i_'_72x - "_0Iv" (i0)

The introduction of this equation into the flutter equation (eq. (2))

by means of equations (3) and (4) results in the aerodynamic coefficients

also listed with those of other theories in table IV.

Divergence Equations

With h0 = 0 and _ = 0 in equation (2), the equation for static

divergence is given by

: = (ll)
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where M_ is based solely on the steady-state part of the aerodynamic

forces and k_ is the spring constant of the model in pitch. For the

Munk-Jones theory, equation (ii) reduces to

2_2 i

1i - _= - _2_

(12)

k_ 2_ _ _c_
3

(12a)

for the cone, where qd is the dynamic pressure at divergence. Equa-

tion (12a) is plotted in figure 14 as a function of pitch-axis position,

and, as may be seen, the cone is free from divergence for pitch axes

located in the first two-thirds of its length.

From equation (ll), it can be shown that the divergence equation

based on the frequency expansion theory (ref. 3) is given by

2_%brb2 -i

63-_I _i- (B tan 5)2

(13)

Similarly, for the quasi-steady theories of Von Karman, Van Dyke, and

Newton, together with piston theory due to Miles and Young, equation (ii)
reduces to

2_%brb 2 l
(14)

Note that for the Newtonian theory for F
= 2, equation (14) becomes

identical to equation (12a) which is based on the Munk-Jones theory.

Equations (13) and (14) are also plotted in figure 14, equation (14)

being for both the Von Karman and Van Dyke theories. The frequency

expansion and Van Dyke theories are shown for a Mach number of 3 and,

as indicated by the close agreement with the Munk-Jones theory, predict

a small Mach number effect. This is seen more clearly in figure 13
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where, in contrast, the Von Karman and piston theories predict a substan-

tial Mach number effect.

Analytical Results and Comparison With Experiment

Results of flutter and divergence calculations based on the aero-

dynamic theories described in the preceding sections are presented and

compared with experimental results in figures 2 to ll for flutter and

in figure 13 for divergence. The effect of introducing a steady total

axial force into the analysis in terms of drag coefficient is discussed

herein and shown in figures 15 to 20 for flutter and in figure 21 for

divergence.

Flutter.- From the analytical flutter speed boundaries in the upper

parts of figures 2 to ll, it is evident that the different aerodynamic

theories used in the flutter analysis generally tend to be more dlstin-

guishable from one another for frequency ratios greater than 1 than for

frequency ratios less than 1. As the pitch axis was moved aft, this

distinction lessened, and the minimum points in the different boundaries

were lowered. The effect of pitch-axis position is particularly evident

2 The Munk-Jones theory glves
for the case of M = 6.38 when _ = _.

V
the lowest value of in all cases considered, and this minimum

2

value, although it appears to be# is not zero. The frequency ratio at
which this minimum occurred decreased as the pitch axis was moved aft

(compare, for example, figs. 2 and 3) but, as the center of gravity was

moved aft for a given pitch axis, the frequency ratio for this minimum

point increased. (See fig. 5.)

Comparisons of analytical with experimental flutter speed boundaries

show the Van Dyke and Newtonian theories to be in better agreement with

experiment than the other theories, although this is less evident at

M = 6.83 (for the Newtonian theory), because of the fewer number of

experimental points obtained at this Mach number.

In contrast to the behavior noted for V , the parameter a_/_f
b

showed consistently smooth variations throughout the entire range of

frequency ratios covered. Moreover, regardless of the aerodynamic theory

used, the flutter frequency appears to follow the same general trend, and

all the theories considered give good agreement with experiment.
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Divergence.- Comparison between theoretical and experimental diver-

gence trends in figure 15 shows poorer and less consistent agreement than

that obtained for flutter. No definite explanation is offered for tl_

apparent Mach number effect indicated by the Von Karman and piston

theories in contrast to the trends of the other theories. As may be seen

3
in figure 14, this large effect is not confined to x_ = _ but is magni-

fied at this location probably because of its proximity to the infinite

2 (which is also the center of pressure of the
discontinuity at _ =

cone).

Consideration of axial force.- Whereas axial forces have seldom been

considered in aeroelastic problems on lifting surfaces, the greatly

increased aerodynamic drag due to the blunter aerodynamic shapes of mis-

sile configurations together with the large deceleration forces experi-

enced by these configurations have drawn attention to the possible

effects of axial forces on the aeroelastic behavior of bodies of revo-

lution, which, of course, form the basic shapes of missiles. In the

present flutter and divergence studies of cones with their apexes pointed

upstream, a steady axial force D is included with the other forces in

the analysis and is assumed to be acting at a distance xD aft of the

pitch axis as shown in figure l(b). The presence of this force gives

rise to a moment about the pitch axis and tends to decrease the angle of

attack so that the generalized moment given by equation (4) becomes

b

= _0 (x- x_)_(x) _x- D(x_) (15)

(x- - CDq b2x (l a)
M_= jO

where the axial force is written in terms of a drag coefficient CD that

is based on the total of all steady drag forces acting on the cone. This

modification of the generalized moment in pitch results in the addition

i
of the quantity CmD to the coefficient Ac_ in the flutter equa-

8k 2

tion (see table IV), CmD being a moment coefficient due to drag given

by CmD = CD_ D. The divergence equations with the effect of drag

included are
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kcL

1

1 CmD

for the Munk-Jones theory,

2 ° brb2 -m

- i - (# tan 8) 2 + 2

for the frequency expansion method, and

(16)

(17) L
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2 %brb2 _ -1 (18)
ko_ F_S_.I +

for the quasi-steady theories.

The effect of introducing a steady total drag force into the flutter

analysis in the manner just described is shown in figures 15 to 20 for the

Van Dyke and Newtonian theories. Similar effects on the analytical flut-

ter boundaries have been obtained for the Munk-Jones and Von Karman

theories. The values of CmD used in the calculations are based on the

values of CD given in table II. In figures 15 to 19 the effect of

positive values of CmD is to reduce the sizes of the flutter regions

for x_ = 0.5 and _ = 0.58, and for each pitch axis and Mach number

there is a minimum frequency ratio below which the cone is flutter free.

It may also be of interest to note in figures 15 to 19 that the left

branches of the theoretical flutter boundaries with positive values

of CmD tend to lie somewhat closer to the experimental flutter points

than do the theoretical flutter boundaries for CmD = O. However, for

frequency ratios greater than i, the agreement between theory and experi-

ment is slightly better for CmD = 0 than for CmD > 0.

A few flutter calculations were performed with the sign of CmD

arbitrarily changed from plus to minus in order to determine the effect

on flutter of an axial force in the flight direction, such as the force

due to decelerated flight. The results of these calculations are shown

in figures 19 and 20 for CmD = -0.03 and -0.02, respectively, and the
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effect is seen to be opposite to that found for CmD = 0.03 and 0.02.

That is, for _ = 0.5 (fig. 19) the flutter region is enlarged, and

for x_ = 0.667 (fig. 20) there is a maximum frequency ratio above which

the cone is flutter free. The lower parts of figures 15 to 20 indicate

that the flutter frequency is not appreciably affected by the introduction

of a steady axial force.

Some effects of axial forces on the theoretical divergence charac-

teristics are shown in figure 21 for the Munk-Jones and Newtonian (_ = 2)

theories. For the range of values of CmD used in the flutter calcula-

tions, the effect of positive values of CmD is to increase the theo-

retical divergence speed above the divergence speed for CmD = 0, and

the effect of negative CmD is to decrease divergence speed below that

for CmD = 0. At _ = _, the agreement
with experiment is worse for

CmD > 0 than for CmD = 0.

CONCLUDING R_4ARKS

This paper reports the results of an experimental and analytical

study of the flutter and divergence behavior of rigid conical shells

spring mounted with freedom to translate vertically and pitch in super-

sonic flow. Translatlon-to-pitch frequency ratio was varied over a wide

range above and below a frequency ratio of l, and three pitch-axis

positions were examined for flutter and one pitch-axis position for

divergence. Results given in terms of a stiffness-altitude parameter

similar to that used in wing flutter show a strong effect of pitch-axis

position and frequency ratio on the flutter-speed boundaries, partic-

ularly near a frequency ratio of 1.

The distinction between several slender-body theories for approx-

imating the oscillating aerodynamic forces and moments in the flutter

calculations generally tends to be more evident at frequency ratios

greater than 1 than at frequency ratios very close to 1. Comparison of

analytical with experimental flutter-speed boundaries shows the quasi-

steady theories, particularly Van Dyke's second-order theory, to be in

better agreement with experiment than are the other theories at low

supersonic Mach numbers. No flutter was encountered experimentally or

predicted analytically when the center of gravity of the model was ahead

of the pitch axis.
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Agreementbetween calculated and experimental static divergence
boundaries for a cone with pitch axis at three-fourths the length of
the cone, measured from the nose_ is poor and not consistent with respect
to variation in Machnumber. In other words, none of the theories used
showeda consistent agreement - or even a lack of agreement - with exper-
iment for the Machnumbers considered.

The introduction of an axial force based on steady total drag mea-
surements into the flutter calculations resulted in increased theoretical
flutter-speed boundaries for frequency ratios less than i and slightly
decreased boundaries for frequency ratios greater than I. For an arbi-
trary change in the direction of the axial force at a Machnumber
of 6.83, the reverse trends were obtained.

Langley Research Center_
National Aeronautics and SpaceAdministration,

Langley Air Force Base, Va., December4_ 1961.
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APPENDIX

ONTHEUSEOFTKESTEADY-STATEPRESSURECOEFFICIENTIN

DETERMININGQUASI-STEADYAERODYNAMICCOEFFICIENTS

FORBODIESOFREVOLUTION

L
i
2
6
2

As noted in the main body of this paper, the extension of steady-

flow theory to the unsteady case for a body of revolution basically
involves the introduction of the downwash into an expanded form of the

steady-state pressure coefficient. Pertinent details of this procedure

are presented briefly in this appendix for the Von Karman and shock

expansion theories.

Von KarmanTheory

In the method due to Von Karman (ref. 4), the steady-state pressure

coefficient can be written as

Cp 2Kc2 og
M 2 PKc

where

K c -

w sin e)Kc =MS+ V
(A2b)

for a cone of semi-vertex angle 53 v being the local normal velocity

at a point on the surface of the body, and a the speed of sound in the

undisturbed airstream. The derivation of equation (A2a) is based on the

boundary condition requiring the vanishing of the velocity of flow normal

to the body surface and involving the relation
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v = V _r(x't) 3r(x_t) (A3)
8x + 3t

where r(x,t) = r(x) + z(x,t)sin e, as shown in reference 3, for example.

Equation (A1) may be expanded in a Taylor's series about w = 0 to give

(retaining only the first two terms of the series)

ll iI ll 2 llW--sin e (A4)2 + 46 og -g - vCp _ 282 og 85

Substitution of equation (A4) into equation (6) leads to

jo_(x) :4qx82 og2_-
_b

l(x) = 4_qx5 2 og-_ -

for the lift per unit length.

equation (Tb).

sin28 de

(AS)

This equation may be put in the form of

Shock Expansion Theory

The pressure ratio used in equation (9) for the shock expansion

theory at high supersonic Mach numbers is from reference 7 given by

\ _ + zMN sin e (t) + [(x)_ _d--_t]

+ sin e(_ - TMN)[dX,x=O \ V dt 0 It -

(A6)

for a cone, where PN and M N are the pressure and Mach number for the

unyawed cone at its apex behind the shock wave on the surface of the cone,

and where the motion of the body is specified by equation (8a). The
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d_
quantities -- and

dx
_(o)

By letting t = tO +
V

are given by

- c%

_(o) = ho - _Ox_.j

() _(t°+x)ft 0 =e

(A7)

(A8)

and

jt__= vj
(A9)

Substitution of equation (8a) and equations (AT) to (Ag) into equa-

tion (A6) results in the following expression for the pressure ratio for

a cone undergoing vertical translation of and pitch about an axis perpen-

dicufLar to the axis of symmetry:

4P - _ +_,_ _i_ e +V-I_'o ÷ % -
Poo

+ sin e(_- 7_-l-N)[C_0 ica _ V+ -_-(h0 - c_)x e eZ_ (AIO)

The pressure ratio --_' and Mach number MN are obtained from the fol-
P

lowing approximate expressions derived in reference 8:

_: I_-+_(,,,_)j\_j (All)



24

where

= V:Z + (M_)2

and 13 is the angle between the shock wave and the cone surface as

illustrated in the following sketch for the unyawed cone:

/

.i

(A12)

(AJ-3)

L

i

2

6
2

M S is the Mach number immediately behind the shock wave at the nose of

the cone, and

z + 7_.t__m)2
(_)2= 2 (AI_)

[__+ _,(_5)_I + _- (.8)21
- 2 _i

The parameter N in equations (A6) and (AI0) is obtained from the

following relations given in reference 7:

M
I
i
i

\.

(M8)4 il

(A_]_.5)
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where

Q __

i +

i + _(M_) 2
2

7 +5 MS

7+1

l+ 22

When the shock expansion theory was applied for M = 6.83, the

following numerical values of the pertinent parameters given by equa-

tions (AIO) to (AI6) were used:

= 7.5 ° (tan 8 = 0.1317 actually used)

M = 6.83

= _ for helium7

= 1.4418

_--_S)2 = 0.82048

_SS] = 0.92635

_= 2.84355
p_

(At6)

r_
-= 1.13125
M

Q = 0.74047

By using these values in equation (AIO) and substituting this equation

into equation (9), the lift per unit length determined from equation (6)
is
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x 2x18 ix= -47 y o + _ - x_

J

9_x\

O. 5505 + 9--( hO - e e

icu

which reduces to equation (I0) when e V is approximated by i - immx,
V

and and higher power terms are neglected. The factor ei(_t is,

of course_ eliminated by virtue of the assumption of simple harmonic

motion initially in the derivation of the flutter equations.

L

i

2

6
2
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TABLE I.- PROPERTIES OF MODELS

Eb = 0.667 ft; _ = 7.5 °; and rb = 0.0878 ft]

Model

i

IA

IB

2

3

3A

3B
4

O. 50

.5O

.5O

•58

.667

.667

.667

•75

J m_

ib- sec2/ft!

I 20.11 × 10 -4

21.7

20.72

21.69

19.97

26 .O5

i 2o.9123.35

_g

o.o564
.o862

•o813

.o2125

-.o496
.0365

.oo4375

-.o685

ft-lb-sec 2

O.522_ x 10 -4

•543

.496
•51o
.486

.764

•366

•55_

2
r_

0•0585

.o%2
•o538

•o529

•0549

•o659

•0394

•o538

L

!

2

6

2

TABLE II.- DRAG COEFFICIENT DATA

M

2

3
6.83

CD

Average

upper
value

o. 295

.19

.o6

Average
lower

value

o.275
.16

•047
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Figure 2.- Flutter boundaries for model i (_ = 0..50) at a Mach number
of 1.64.
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Figure 3.- Flutter boundaries for model 2 (_ = 0.58) at a Mach number
of z.64.
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Figure 4.- Flutter boundaries for model 3A (_ = 0.667) at a N_ch number
of 1.64.
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Figure 5.- Flutter boundaries for models i and 1A (_ = 0._0 for both

models) at a Mach number of 2.
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Figure 6.- Flutter boundaries for model 2 (_ = 0.58) at a Mach number of 2.
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model 2 (_ = 0.58) at a Mach number of 2.
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model 2 (_z = 0._8) at a Mach number of 3.
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